免费色播,亚洲国产欧美国产第一区二区三区,毛片看,日本精品在线观看视频,国产成人精品一区二区免费视频,日本黄色免费网站,一级毛片免费

光學(xué)新進(jìn)展推動(dòng)近紫外應(yīng)用的發(fā)展

來源:網(wǎng)絡(luò)

點(diǎn)擊:2544

A+ A-

所屬頻道:新聞中心

關(guān)鍵詞: 光學(xué),近紫外應(yīng)用,薄膜,光源

    作者:Gregory Fales,愛特蒙特光學(xué)公司光學(xué)產(chǎn)品生產(chǎn)經(jīng)理

      受到基底和鍍膜材料選擇范圍以及加工成本方面的限制,使得深紫外(100~250nm)應(yīng)用相對(duì)稀少,但是得益于新型光學(xué)元件、薄膜和光源的發(fā)展,最近近紫外(250~400nm)應(yīng)用正在蓬勃發(fā)展。

      在電磁波譜圖中,通常將紫外波段(UV)分為三個(gè)區(qū)域:UV-C(通常定義為100~280nm)、UV-B(280~320nm)和UV-A(320~400nm)。然而,從更加實(shí)用的角度看,紫外光譜正好可以在250nm附近分成兩部分。對(duì)光學(xué)元件來講,在波長(zhǎng)為100~250nm的范圍內(nèi)(通常分別定義為深紫外和極紫外區(qū),或DUV和EUV區(qū))可選擇的基底和鍍膜材料有限,并且加工成本昂貴,因此該波段內(nèi)的應(yīng)用一直相對(duì)稀少。然而,近紫外區(qū)的應(yīng)用正在蓬勃發(fā)展,并且在引領(lǐng)(或者也許是被引領(lǐng))相關(guān)的紫外光學(xué)元件、薄膜以及紫外光源的進(jìn)一步發(fā)展。

    光學(xué)材料

      事實(shí)上,光學(xué)元件的發(fā)展建立在材料科學(xué)的基礎(chǔ)之上。研究人員正在進(jìn)行大量的研究工作開發(fā)在紫外區(qū)域有發(fā)展?jié)摿Φ墓鈱W(xué)材料,以及在遠(yuǎn)紅外區(qū)域有吸引力的單獨(dú)材料。在近紫外區(qū)域,光學(xué)透過材料的選擇一直都非常有限。

     

    圖1:三種標(biāo)準(zhǔn)高數(shù)值孔徑的近紫外元件設(shè)計(jì),工作波長(zhǎng)為266nm。非球面透鏡提供了比球面單透鏡小兩個(gè)數(shù)量級(jí)的光斑尺寸。

       熔融石英由于具有高透光率、低熱膨脹系數(shù)以及合理的色散,其已經(jīng)成為一種普遍的光學(xué)材料。然而,熔融石英也有它的局限性,特別是涉及到制造精密的折光元件的時(shí)候。熔融石英的低折射率(在整個(gè)近紫外、可見和近紅外區(qū)均小于1.50)不太適合設(shè)計(jì)和制造具有高數(shù)值孔徑的光學(xué)元件。高數(shù)值孔徑光學(xué)元件可用于收集和重新聚焦高度發(fā)散的光源(如熒光發(fā)射)或非常弱的光源(同樣是熒光發(fā)射),這在許多近紫外應(yīng)用中通常是必需的。

      一個(gè)簡(jiǎn)單的高數(shù)值孔徑近紫外“元件”有三種可能的配置,其中一種是一個(gè)由熔融石英制造的簡(jiǎn)單的平凸透鏡(見圖1)。凸面的極大曲率立刻就顯現(xiàn)出來了。這個(gè)表面不僅很難加工,并且極大的曲率半徑帶來的球面像差產(chǎn)生了401個(gè)波長(zhǎng)的聚焦點(diǎn),從而形成一個(gè)大小為645µm的光斑。熔融石英制造的球面單透鏡相對(duì)較為便宜,且易于獲得,但很明顯只能提供適度的性能。另一種實(shí)現(xiàn)高數(shù)值孔徑的設(shè)計(jì)是采用氟化鈣(CaF2)和石英制造的三膠合透鏡。顯然這種設(shè)計(jì)帶來了性能上的顯著改善,獲得了303µm的光斑,光斑大小大約減少了50%。然而,氟化鈣要比熔融石英貴3~4倍,并且也是一種很難加工的材料,這意味著這種三膠合透鏡的成本將可能比球面單透鏡高20~25倍。與此類似的設(shè)計(jì)也和球面單透鏡一樣,可以從市場(chǎng)上購(gòu)買,盡管不是很容易買到。

      實(shí)現(xiàn)高數(shù)值孔徑近紫外“元件”最好的選擇,就是第三種途徑:熔融石英非球面透鏡。非球面表面消除了球面相差,所形成的光斑只受到衍射效應(yīng)的影響。雖然一些熔融石英非球面透鏡可以從市場(chǎng)上買到,但卻價(jià)格昂貴(價(jià)格為球面單透鏡的8~10倍),并且不能提供上述三膠合透鏡所具有的色差校正功能。熔融石英的高轉(zhuǎn)變溫度(Tg約為1000℃)消除了模具制造的可能性,而利用金剛石車削、計(jì)算機(jī)數(shù)字控制(CNC)或者磁流變拋光(MRF)設(shè)備,可以很容易將其加工成非球面。

      幸運(yùn)的是,無定形、硫系、硫化物和氟化物材料方面的研究已使得模壓紫外材料的選擇越來越多。ZBLAN是一種結(jié)合了重金屬鋯、鋇、鑭、鋁和鈉的氟化物玻璃,由于它的低轉(zhuǎn)變溫度(Tg低于300℃)和低色散,已經(jīng)引起了研究人員的廣泛興趣。

      在任一情況下(低成本模壓ZBLAN或加工熔融石英),非球面正在使需要高分辨率圖像和/或弱信號(hào)高度收集的應(yīng)用成為可能,特別是在生物技術(shù)和生物醫(yī)學(xué)應(yīng)用領(lǐng)域。比如用紫外線對(duì)蛋白質(zhì)的結(jié)晶成像,可以幫助將蛋白質(zhì)晶體與鹽晶體區(qū)分開來,揭示更多在可見光照射下不成像的晶體。這種技術(shù)依賴于色氨酸固有的熒光特性,即在280nm處有一吸收峰,而發(fā)射光譜覆蓋300~350nm。這些紫外線非球面透鏡提供了最大限度的信號(hào)采集和檢測(cè),提高了設(shè)備的效能,并在藥物研發(fā)、設(shè)計(jì)和輸送等領(lǐng)域提供輔助。

    波長(zhǎng)濾波

      除了收集和聚焦近紫外光信號(hào),近紫外線照射的選擇性分離對(duì)許多應(yīng)用來說至關(guān)重要。直到最近,需要在近紫外區(qū)域進(jìn)行波長(zhǎng)選擇性分離的應(yīng)用仍只有非常有限的選擇。光柵歷來都被有效地用于波長(zhǎng)分離儀器,如分光光度計(jì)和單色儀。但是,光柵往往產(chǎn)生相當(dāng)多的雜散光,在近紫外區(qū)的效率相對(duì)較低(小于70%),并且不允許對(duì)物體進(jìn)行直接成像。此外,考慮到基于光柵的儀器所需要的復(fù)雜幾何配置,濾光片顯然具有重要作用。

      近紫外濾光器的推出已有一段時(shí)間。然而直到最近,光學(xué)濾光片幾乎都是由軟膜薄膜材料和/或多個(gè)吸收薄膜層和半透明玻璃基底制造而成的。軟膜(通常為金屬介質(zhì)混合膜堆)透過率低,損傷閾值低,并且環(huán)境穩(wěn)定性差,很容易由于熱、潮濕或經(jīng)常被接觸而損壞。吸收層和半透明玻璃基底通常表現(xiàn)出有害的自發(fā)熒光,在探測(cè)器上產(chǎn)生大量噪聲。

      在制備耐用、更加穩(wěn)定的濾光薄膜方面,過去10年中已經(jīng)取得諸多進(jìn)展,特別是在紫色、藍(lán)色和綠色光譜區(qū)域內(nèi),在生物醫(yī)學(xué)應(yīng)用中廣泛用于收集和分離常見的熒光蛋白質(zhì)的激發(fā)和發(fā)射光譜,以及在通信波段的近紅外區(qū)域?qū)波段(1530~1570nm)和L波段(1565~1625nm)選取特定波長(zhǎng)。制備這些濾光片的技術(shù)包括離子束濺射技術(shù)和先進(jìn)的等離子反應(yīng)濺射技術(shù),使用硅、鋁、鈦、鉭、鋯、釔、鉿、鈧和鈮的氧化物在高能量下沉積,產(chǎn)生致密和緊湊的薄膜。

      然而,在近紫外波段沉積同樣的材料卻面臨著巨大挑戰(zhàn)。難熔的材料在近紫外區(qū)域往往具有更高的吸收──以至于如硅、鈦、鋯和鈮的氧化物都不再適用。材料的折射率在近紫外區(qū)迅速變化也是問題,這使得制備具有高通帶透過率、深帶外截止以及在通帶和截止帶之間具有尖銳過渡區(qū)的濾光片更具挑戰(zhàn)性。為了在紫外波段獲得較高的透過率,要求膜層相對(duì)較薄,這使得問題進(jìn)一步復(fù)雜化。

      盡管面臨這些挑戰(zhàn),廠商還是生產(chǎn)出了更高性能的紫外濾光片。具有通帶透過率高于80%、通帶外透過率為10-6,并且具有尖銳過渡區(qū)的濾光片,正使得光譜、熒光顯微、凈化、消毒、工業(yè)加工和半導(dǎo)體制造等領(lǐng)域的應(yīng)用成為可能。

    照射光源進(jìn)展

      如果沒有近紫外區(qū)域大量光源的進(jìn)展,所有這些都不可能實(shí)現(xiàn)。在此之前,需要紫外照明的應(yīng)用僅有相當(dāng)有限的選擇;用于寬帶輸出的氙燈或氘燈,用于準(zhǔn)單色輸出的汞燈,或者用于真正的單色輸出的多種激光光源(如氯化氙、氟化氙、Nd:YAG激光器的三倍頻和四倍頻、氮?dú)?、氦鎘和氬離子激光器)。不過,當(dāng)前正在研究制造準(zhǔn)單色和真正單色的半導(dǎo)體光源,創(chuàng)造了更小、更便宜和能源效率更好的紫外照射光源。

      此前采用汞弧光燈(峰值為253nm、313nm、334nm、365nm和406nm)準(zhǔn)單色輸出的應(yīng)用,現(xiàn)在正被氮化鎵(GaN)、氮化鋁鎵(AlGaN)和氮化鋁鎵銦(AlInGaN)發(fā)光二極管(LED)所取代。這些寬帶隙III-V族化合物的商用LED,輸出波長(zhǎng)低至280nm、功率數(shù)十毫瓦,室溫下壽命達(dá)到數(shù)千小時(shí)。短波長(zhǎng)紫外LED的應(yīng)用包括生物傳感器、水凈化和熒光光譜。對(duì)于更成熟的波長(zhǎng)更長(zhǎng)的紫外LED(約365nm),其應(yīng)用包括偽造檢測(cè)、紫外光固化系統(tǒng)、光刻和DNA測(cè)序與分析等。

      近紫外區(qū)域真正的單色半導(dǎo)體光源(激光二極管)仍處于研究階段。輸出功率為數(shù)十毫瓦、工作壽命幾百小時(shí)的375nm激光二極管可以很容易購(gòu)得,但除了這些激光二極管,氮化銦鎵(InGaN)配置的材料限制使實(shí)現(xiàn)受激輻射相當(dāng)困難。

      總之,近紫外光譜區(qū)的進(jìn)展正在迅速發(fā)生。從透鏡、反射鏡、偏振片和棱鏡等標(biāo)準(zhǔn)光學(xué)元件到更為復(fù)雜的物鏡和非球面鏡,都比以往更加容易獲得。尤其是非球面鏡和物鏡,由于可以獲得更小的聚焦點(diǎn)尺寸(使用紫外光的主要優(yōu)點(diǎn)之一),使得利用紫外照射最為有效。通過致密濺射技術(shù)制備的薄膜,具有更高的透過率和更好的對(duì)比度,這進(jìn)一步強(qiáng)化了該方面優(yōu)勢(shì)。這也是為什么許多行業(yè)應(yīng)用正在轉(zhuǎn)向采用紫外光來解決所面臨的挑戰(zhàn),為人類創(chuàng)造一個(gè)更美好、更清潔、更安全和更健康的明天。

    (審核編輯: 智匯小新)