通信應(yīng)用中差分電路設(shè)計(jì)的相關(guān)技術(shù)
點(diǎn)擊:964
A+ A-
所屬頻道:新聞中心
ADI公司以足夠的保真度成功捕獲信號(hào)是通信系統(tǒng)設(shè)計(jì)的一大難題。嚴(yán)格的標(biāo)準(zhǔn)規(guī)范會(huì)要求選擇合適的接口拓?fù)浣Y(jié)構(gòu)。本文介紹了差分設(shè)計(jì)技術(shù)的優(yōu)勢(shì),以及其性能優(yōu)勢(shì)在當(dāng)今高性能通信系統(tǒng)中如何影響嚴(yán)格的系統(tǒng)需求。此外,將回顧射頻的定義,概要說明系統(tǒng)預(yù)算,并對(duì)比不同的實(shí)現(xiàn)方法。
通信應(yīng)用中差分電路設(shè)計(jì)的相關(guān)技術(shù)有哪些呢?首先對(duì)單端和差分信號(hào)進(jìn)行一下比較,然后簡單介紹接收器的信號(hào)鏈和系統(tǒng)性能方面一些需要考慮的因素,然后就會(huì)發(fā)現(xiàn)差分應(yīng)用的優(yōu)勢(shì)。從驅(qū)動(dòng)ADC的角度與單端應(yīng)用作比對(duì),我們會(huì)發(fā)現(xiàn)差分應(yīng)用會(huì)更容易實(shí)現(xiàn)較高的數(shù)據(jù)率。最后呢,我們將回到系統(tǒng)設(shè)計(jì)層面,總結(jié)差分應(yīng)用的好處。
單端和差分信號(hào)
首先談到單端和差分信號(hào)的概念,這個(gè)大家都比較了解了。這里我們用另外一種方式來表達(dá),我們可以將信號(hào)分為不平衡信號(hào)或平衡的信號(hào),單端信號(hào)屬于不平衡信號(hào),因?yàn)樗菃蝹?cè)信號(hào),所以是相對(duì)地而言的,沒有與之平衡的信號(hào)對(duì),相比平衡信號(hào),不平衡的信號(hào)呢一般會(huì)產(chǎn)生較高的諧波失真。
而差分信號(hào),則是平衡信號(hào),差分對(duì)一般有著共同的共模電平和幅值相同的差模電平。衡量差分信號(hào)或者說平衡信號(hào)時(shí),我們關(guān)心的是正負(fù)輸入端信號(hào)的差值變化。這種平衡的信號(hào)帶來的諧波失真就相對(duì)小很多。
系統(tǒng)級(jí)設(shè)計(jì)
另一方面,在通信系統(tǒng)應(yīng)用的時(shí)候,我們看到一個(gè)比較通用的超外差接收器的信號(hào)鏈,圖1 為通用的超外差接收器的信號(hào)鏈,在天線后接一級(jí)低噪放大器,用于放大信號(hào)并抑制噪聲,而后用兩級(jí)混頻器將信號(hào)下變頻到較低頻,其間我們會(huì)加入適當(dāng)?shù)臑V波器,以濾除有用信號(hào)頻帶以外的噪音和諧波,之后就是驅(qū)動(dòng)ADC的緩沖運(yùn)放。這是我們今天主要討論的問題。這一級(jí)運(yùn)放的主要目的是調(diào)節(jié)信號(hào)的電平范圍,提高驅(qū)動(dòng)能力,有時(shí)候也要作為單端差分之間的轉(zhuǎn)換。在進(jìn)入ADC之前我們需要加抗混疊濾波器,最后是用ADC對(duì)基帶信號(hào)進(jìn)行模數(shù)轉(zhuǎn)換。我們看到如果系統(tǒng)想實(shí)現(xiàn)較高的動(dòng)態(tài)范圍,除信號(hào)以外不能引入過多的噪聲和諧波。
圖1 通用的超外差接收器的信號(hào)鏈
來具體看一下在一個(gè)通信系統(tǒng)中有哪些比較值得注意的性能和指標(biāo),在我們對(duì)單端信號(hào)和差分信號(hào)作比較之前,我們需要了解一些系統(tǒng)級(jí)設(shè)計(jì)所要考慮的問題。
那么,什么樣的設(shè)計(jì)是一個(gè)較好的射頻系統(tǒng)設(shè)計(jì)呢?首先,信號(hào)靈敏度要高,這意味著較低的噪聲,時(shí)鐘引入的相位噪聲同樣要低。輸入信號(hào)要有足夠的驅(qū)動(dòng)能力,相關(guān)的指標(biāo),如高的三階截點(diǎn)和1dB壓縮點(diǎn)。然后就是各個(gè)模塊的性能是否足夠好,是否能較好的區(qū)分信號(hào)和噪聲,線性度是否足夠好等等。另外呢就是低功耗低成本等方面的考慮了。
我們說差分信號(hào)鏈相對(duì)單端信號(hào)來講有很多優(yōu)勢(shì)。由于是差模信號(hào),輸出的是兩個(gè)差分信號(hào),實(shí)際上輸出的差模信號(hào)幅度相對(duì)擴(kuò)大了一倍,換一個(gè)角度來講,在同等輸出范圍條件下,工作電壓會(huì)更低。這樣,在要求低諧波失真的應(yīng)用中,就可以保證足夠的幅值余量。差分系統(tǒng)自身類似奇函數(shù)的特性可以消除系統(tǒng)中的偶次諧波項(xiàng),也就是說2次、4次、6次諧波等,在這些頻點(diǎn)上的諧波相對(duì)奇次諧波會(huì)很小甚至看不到。最后,由于信號(hào)的返回路徑不再是地平面,信號(hào)受地平面或是電源平面影響不是那么敏感,從而減少了噪聲的耦合引入,同時(shí)實(shí)現(xiàn)更好的抗電磁干擾效果。
如圖2所示,單端信號(hào)會(huì)對(duì)共模噪聲、電源噪聲和電磁干擾比較敏感,運(yùn)放會(huì)對(duì)這些噪聲一定程度的放大。而差分信號(hào)由于兩側(cè)信號(hào)自身形成電流回路,抑制了共模噪聲和干擾,僅對(duì)差模信號(hào)進(jìn)行有效放大。
通過推導(dǎo),我們也可以看出差分放大的奇次特性,理想情況下頻譜上我們僅能看到基波和奇次項(xiàng)諧波。在這里我們僅給出結(jié)論,比較值得注意的是三次諧波和它引起的三階截點(diǎn),IP3是在基波和三階失真輸出曲線交點(diǎn)的理論輸入功率,它是描述放大器線性程度的一個(gè)重要指標(biāo):
在通信系統(tǒng)設(shè)計(jì)中,對(duì)有用信號(hào)的驅(qū)動(dòng)、提取并加載到ADC輸入上是很關(guān)鍵的問題。對(duì)于高精度系統(tǒng)設(shè)計(jì),要求對(duì)器件和接口方式進(jìn)行適當(dāng)?shù)倪x擇。我們將給大家?guī)讉€(gè)例子,但在此之前請(qǐng)大家了解,如圖3所示,我們要提取的是藍(lán)色部分的有用信號(hào),它的能量很小而且還有周圍信號(hào)和噪聲的干擾。為了把它抓出來,我們要對(duì)噪聲,動(dòng)態(tài)范圍,和其他一些ADC相關(guān)的指標(biāo)加以注意,后面的幻燈片中將具體說明。我們看到功能實(shí)現(xiàn)的主要模塊包括緩沖運(yùn)放,抗混疊濾波器和ADC。
圖2 單端和差分信號(hào)差別
圖3 有用的信號(hào)和噪聲
圖4是一個(gè)單端輸入單端運(yùn)放的例子,可以看到中頻放大器、抗混疊濾波器、變壓器和ADC四個(gè)級(jí)各自的信號(hào)增益,輸入輸出3階截點(diǎn)功率,和引入噪聲的系數(shù)等指標(biāo)。單端信號(hào)利用無源變壓器在ADC前轉(zhuǎn)換為差分信號(hào)。這里要注意一下,假設(shè)ADC的終端匹配阻抗為200Ω,而由于前面各級(jí)都是50Ω的特征阻抗,所以將變壓器的阻抗比設(shè)為1:4。
如果把變壓器提前,將信號(hào)在運(yùn)放前就轉(zhuǎn)換為差分信號(hào),則單端運(yùn)放換成差分運(yùn)放,這樣即構(gòu)成全差分結(jié)構(gòu)。如圖5所示。
這里要講到級(jí)聯(lián)系統(tǒng)總體噪聲系數(shù)和輸入輸出三階截點(diǎn)的等效計(jì)算。當(dāng)考慮總體的噪聲系數(shù)時(shí),第一級(jí)的影響最大;而考慮截點(diǎn)指標(biāo)時(shí),最后一級(jí)的影響最明顯。
再考慮一下無雜散動(dòng)態(tài)范圍與系統(tǒng)三階截點(diǎn)的關(guān)系,我們知道隨著輸入信號(hào)能量增加,三階交調(diào)失真和噪聲底剛好相等時(shí),系統(tǒng)達(dá)到最大的SFDR,此時(shí)可以用這個(gè)式子來表示:SFDR = (2/3)(IIP3-NF-10log( TERMAL NOISE)。
于是我們可以算出剛才提到的兩種單端轉(zhuǎn)差分方式,總體產(chǎn)生的信號(hào)增益、三階截點(diǎn)、噪聲系數(shù)和無雜散動(dòng)態(tài)范圍。從指標(biāo)上看相差不多,差分有源驅(qū)動(dòng)的結(jié)構(gòu)總體失真和噪聲系數(shù)略高,但是SFDR性能也高一些。另外要注意,在單端無源轉(zhuǎn)換結(jié)構(gòu)中,如果去掉中頻放大器,滿幅的參考輸入功率為6dBm,且抗混疊濾波器的設(shè)計(jì)是非對(duì)稱的結(jié)構(gòu)。而且整個(gè)設(shè)計(jì)要加入更多阻性匹配器件,這就要求前級(jí)驅(qū)動(dòng)的能力要強(qiáng),也就是說電流和功耗要大。另外,單端運(yùn)放的偶次諧波,共模抑制,電源抑制問題也都會(huì)一定程度上影響整體系統(tǒng)的性能。
另一方面,在傳送數(shù)據(jù)時(shí),可以一位一位地傳,也可以將其分割成符號(hào)進(jìn)行傳送,比如每個(gè)符號(hào)兩比特,然后將其分別對(duì)應(yīng)到4種相位上,之后再作用到載波上進(jìn)行傳送。這是一種很常見的調(diào)制模式,即QPSK。
通常情況,我們可以用星座圖來描述不同的調(diào)制方式,我們知道高階的調(diào)制可用于更高數(shù)據(jù)速率的收發(fā)器中,但同時(shí)需要更低的本振泄漏、更好功放線性度、更高的系統(tǒng)帶寬和解調(diào)器信噪比。一方面呢,ADI也在開發(fā)更高性能的產(chǎn)品以滿足客戶的需要,另一方面我們也要在系統(tǒng)設(shè)計(jì)時(shí)注意發(fā)掘問題的原理,并采用適當(dāng)?shù)姆椒ê图记杉右越鉀Q。
圖6中我們可以看出接收系統(tǒng)中的噪聲和諧波對(duì)誤差向量幅度EVM的影響。也就是說,解調(diào)出來的信號(hào)相對(duì)理想的星座圖位置會(huì)有所偏移,一般我們用誤差向量幅度來衡量,過大的誤差向量幅度會(huì)導(dǎo)致符號(hào)錯(cuò)誤并惡化位出錯(cuò)率。特別在高階調(diào)制方式時(shí),符號(hào)之間的位置更近,對(duì)誤差向量幅度的要求更嚴(yán)格。
圖4 單端輸入單端輸出的例子
圖5 全差分結(jié)構(gòu)的例子
圖6 接收系統(tǒng)中的噪聲和諧波對(duì)誤差向量幅度EVM的影響
由此我們可以得出,更高階的調(diào)制有著更高的數(shù)據(jù)速率,同時(shí)也要有更好的EVM,而更好的EVM意味著較高的無雜散動(dòng)態(tài)范圍SFDR,而SFDR又與信噪比、交調(diào)失真和各次諧波項(xiàng)相關(guān)。所以要提高以上這些性能指標(biāo),采用平衡信號(hào)、差分結(jié)構(gòu)即可得到顯著改善。
總結(jié)
最后,對(duì)于好的射頻系統(tǒng)來講,主要關(guān)注的是如何提高對(duì)有用信號(hào)的敏感度,從而更好地將信號(hào)從噪聲、諧波和各種干擾中分離出來。而差分應(yīng)用的好處就在于更好的共模抑制、電源抑制、抗電磁干擾能力、更好的線性度以及同等條件下相對(duì)單端信號(hào)更大的動(dòng)態(tài)范圍。無疑,差分結(jié)構(gòu)優(yōu)勢(shì)明顯,更多也更適合用于高性能的射頻系統(tǒng)。
(審核編輯: 智匯小新)
分享