電動(dòng)助力轉(zhuǎn)向(EPS)系統(tǒng)中的電流檢測(cè)
EPS不同于傳統(tǒng)的助力轉(zhuǎn)向系統(tǒng),它沒有液壓泵或液體。而是將一個(gè)電動(dòng)機(jī)通過齒輪機(jī)構(gòu)安裝在轉(zhuǎn)向齒條上。駕駛員轉(zhuǎn)動(dòng)方向盤時(shí),轉(zhuǎn)向傳感器檢測(cè)方向盤的位置和轉(zhuǎn)速。該信息與來自安裝在轉(zhuǎn)向軸上的轉(zhuǎn)向扭矩傳感器輸入一起送至助力轉(zhuǎn)向控制模塊。為了確定所需要的轉(zhuǎn)向助力,控制模塊接受來自于車速傳感器、牽引力控制和穩(wěn)定性控制系統(tǒng)的輸入(圖1)。
圖1. 典型EPS系統(tǒng)的簡(jiǎn)化方框圖
與動(dòng)力模塊的接口允許控制模塊調(diào)節(jié)電機(jī)電流。增大電機(jī)電流則增大助力,反之亦然。電機(jī)電流往往通過采用H橋電路(圖2)送入脈寬調(diào)制(PWM)電壓進(jìn)行控制。以下的真值表(表1)匯總了H橋電路的不同工作模式。電機(jī)表現(xiàn)為感性負(fù)載,所以通過平均產(chǎn)生的脈動(dòng)電流確定扭矩-為駕駛員提供最終助力。
圖2. 該H橋的4個(gè)柵極信號(hào)相位決定電機(jī)的方向和速度
表1. H橋真值表
電流測(cè)量器件檢測(cè)電機(jī)電流并向控制模塊提供實(shí)時(shí)反饋,使該模塊調(diào)節(jié)PWM占空比,直到電流達(dá)到其目標(biāo)值。測(cè)量電機(jī)電流的常用方法是與電流通路串聯(lián)一個(gè)低值檢測(cè)電阻,該電阻上產(chǎn)生一個(gè)小壓降。該差分電壓被電流檢測(cè)放大器放大,表示電流幅值。
電流檢測(cè)提供三個(gè)選項(xiàng):低邊、高邊和電機(jī)上。相對(duì)應(yīng)地,可將檢測(cè)電阻置于H橋和地之間(低邊電流檢測(cè))、直流總線基部或電池正極端子和H橋之間(高邊電流檢測(cè)),或者直流總線的高邊或電機(jī)本身(輸出電機(jī)PWM電流檢測(cè))。需要對(duì)這些替代方案進(jìn)行不同的折中。低邊方法比較方便,但是在接地回路增加了所不希望的電阻,并且它缺少檢測(cè)對(duì)地短路故障的診斷能力。無論是高邊還是低邊方法,都能夠持續(xù)監(jiān)測(cè)二極管中的電流。然而,PWM電流檢測(cè)沒有這些缺點(diǎn)。
PWM電流測(cè)量電路可能看起來簡(jiǎn)單,但是它所需的性能參數(shù)卻非比尋常。電路必須處理從地到電池電壓之間的滿擺幅共模電壓。所以,為了抑制共模電壓偏移,電路不僅必須具有與該擺幅對(duì)應(yīng)的高輸入電壓范圍,而且必須在開關(guān)頻率及擺率引起的相關(guān)頻率處具有出色的CMRR.
共模瞬態(tài)和PWM信號(hào)的最小占空比也對(duì)電流檢測(cè)放大器的建立時(shí)間提出了苛刻要求。為了獲得高精度和線性響應(yīng),電流測(cè)量電路必須具有高增益、高精度,以及低失調(diào)電壓。由于人工干預(yù)是控制環(huán)路的一部分,所以線性度和精度尤其關(guān)鍵。電路中的任何非線性都會(huì)造成車輛在轉(zhuǎn)向過度時(shí)產(chǎn)生擺動(dòng)或振動(dòng),從而影響駕駛體驗(yàn)。
在圖3所示的電機(jī)電流控制和測(cè)量電路中,電機(jī)連接為H橋配置,由于所加電壓極性很容易反接,使其能夠向任一方向轉(zhuǎn)動(dòng)。所示IC能夠承受的共模電壓從-20V至+75V,使其不受感性負(fù)載、拋負(fù)荷瞬態(tài)電壓及電池反接故障的影響。器件還集成了測(cè)量放大器,擁有專利的直流反饋架構(gòu)提供精密電流檢測(cè),輸入失調(diào)電壓為400?V (最大),增益誤差為0.6% (最大)。外部基準(zhǔn)電壓支持H橋所需的雙向電流檢測(cè),以及工作于半橋H橋電路時(shí)的單向電流檢測(cè)。雙向應(yīng)用中,當(dāng)檢測(cè)電壓為零時(shí),輸出電壓等于基準(zhǔn)電壓??烧{(diào)增益和固定增益方式使該部件能夠在各種應(yīng)用中都具有最大靈活性。
圖3. PWM兼容的H橋電流檢測(cè)電路
螺線管驅(qū)動(dòng)電流檢測(cè)
螺線管被作為汽車中的機(jī)電開關(guān)廣泛應(yīng)用。例如,標(biāo)準(zhǔn)螺線管為啟動(dòng)電機(jī)提供大電流驅(qū)動(dòng),啟動(dòng)發(fā)動(dòng)機(jī)。然而,多種汽車控制系統(tǒng)采用螺線管驅(qū)動(dòng)進(jìn)行精密控制。例如,鐵路上使用的柴油機(jī)系統(tǒng)依靠螺線管作為精密的電子控制閥,它將正確的油量直接噴射至發(fā)動(dòng)機(jī)的每個(gè)高壓汽缸。這些閥門的定時(shí)由發(fā)動(dòng)機(jī)控制單元精密控制,確保與柴油發(fā)動(dòng)機(jī)同步。這樣就能形成相對(duì)“綠色”的發(fā)送機(jī),噪聲更低,排放更少,更具燃油效率。螺線管控制的其它應(yīng)用包括自動(dòng)變速、傳動(dòng)控制、制動(dòng)控制以及主動(dòng)懸掛。
高邊開關(guān)通常為FET,其柵極由PWM信號(hào)控制(圖4)。FET導(dǎo)通時(shí),它將螺線管連接至14V電池電壓,產(chǎn)生電流,對(duì)螺線管線圈充電;FET截止時(shí),螺線管通過箝位二極管和分流電阻放電。PWM頻率和占空比的調(diào)節(jié)決定螺線管中的平均脈動(dòng)電流,進(jìn)而控制施加至執(zhí)行器的力。
圖4. 圖中典型的螺線管驅(qū)動(dòng)電流采用高邊分流
為了調(diào)節(jié)PWM頻率和占空比而檢測(cè)螺線管電流的挑戰(zhàn)與H橋應(yīng)用中類似。電流檢測(cè)放大器輸入處的共模電壓范圍從電池電壓低至略為負(fù)值水平(箝位二極管的壓降)。典型螺線管需要幾個(gè)安培的電流,所以能承受這一電流的箝位二極管所呈現(xiàn)的正向偏壓高于1V.
同樣,電流檢測(cè)放大器的寬輸入共模范圍和響應(yīng)共模變動(dòng)的快速建立時(shí)間非常適合于該項(xiàng)應(yīng)用。該應(yīng)用與H橋的主要區(qū)別是螺線管電流流動(dòng)的方向總相同,因此電流檢測(cè)放大器僅需是單向(MAX9918的基準(zhǔn)輸入(REFIN)連接至地時(shí),即變?yōu)閱蜗螂娏鳈z測(cè)放大器)。
實(shí)驗(yàn)室結(jié)果
圖5所示為作為實(shí)驗(yàn)室原型的螺線管典型應(yīng)用電路。用2mH電感模擬螺線管,1.6Ω低ESR.檢測(cè)電阻為100mΩ,15Ω的R4將螺線管最大電流限制為:
IMAX = VBAT/(RSENSE + ESR + R4) = 12V/(0.1 + 1.6 + 15)Ω = 0.72A
?。ㄗ⒁?,實(shí)際螺線管電路中沒有R4.)
該最大電流值為電感完全充電時(shí)達(dá)到的理論限值。圖中所示的電阻和電感值將電路時(shí)間常數(shù)設(shè)定為大約0.12ms,相當(dāng)于大約8.3kHz.外部電阻R1 = 1kΩ和R2 = 79kΩ設(shè)定的增益為80.
圖5. 該螺線管驅(qū)動(dòng)電流為實(shí)驗(yàn)原型
采用PWM頻率5kHz、占空比分別為80% (圖6)和50% (圖7)的波形,說明圖5所示電路的工作。頂部波形為R4的電壓,與電感通過的電流成比例。中間波形為電流檢測(cè)放大器的輸出,底部波形所示為PFET漏極的PWM信號(hào)。占空比越大,產(chǎn)生的電流越大,與預(yù)期相符。
圖6. 來自于圖5電路的波形,采用5kHz PWM頻率,80%占空比(頂部波形為R4電壓,中間波形為電流檢測(cè)放大器的輸出,底部波形為pFET柵極的PWM信號(hào))。
圖7. 來自于圖5電路的波形,采用5kHz PWM頻率,50%占空比(頂部波形為R4電壓,中間波形為電流檢測(cè)放大器的輸出,底部波形為pFET柵極PWM信號(hào))。
綜上所述,利用高精度、高壓、高邊電流檢測(cè)放大器,例如MAX9918,能夠以較小的檢測(cè)電阻進(jìn)行精密測(cè)量。它能夠處理EPS等系統(tǒng)中常見的H橋驅(qū)動(dòng)雙向電機(jī)電流,以及自動(dòng)變速、傳動(dòng)控制、制動(dòng)控制和主動(dòng)懸掛中常見的單相螺線管電流。
(審核編輯: 小丸子2)