GPU是顯示卡的“心臟”,也就相當(dāng)于CPU在電腦中的作用,它決定了該顯卡的檔次和大部分性能,同時也是2D顯示卡和3D顯示卡的區(qū)別依據(jù)。 2D顯示芯片在處理3D圖像和特效時主要依賴CPU的處理能力,稱為“軟加速”。3D顯示芯片是將三維圖像和特效處理功能集中在顯示芯片內(nèi),也即所謂的“硬件加速”功能。顯示芯片通常是顯示卡上最大的芯片(也是引腳最多的)。GPU使顯卡減少了對CPU的依賴,并進行部分原本CPU的工作,尤其是在3D圖形處理時。GPU所采用的核心技術(shù)有硬體T&L、立方環(huán)境材質(zhì)貼圖和頂點混合、紋理壓縮和凹凸映射貼圖、雙重紋理四像素256位渲染引擎等,而硬體T&L技術(shù)可以說是GPU的標(biāo)志。
工作原理
簡單的說GPU就是能夠從硬件上支持T&L(Transform and Lighting,多邊形轉(zhuǎn)換與光源處理)的顯示芯片,因為T&L是3D渲染中的一個重要部分,其作用是計算多邊形的3D位置和處理動態(tài)光線效果,也可以稱為“幾何處理”。一個好的T&L單元,可以提供細致的3D物體和高級的光線特效;只不過大多數(shù)PC中,T&L的大部分運算是交由CPU處理的(這就也就是所謂的軟件T&L),由于CPU的任務(wù)繁多,除了T&L之外,還要做內(nèi)存管理、輸入響應(yīng)等非3D圖形處理工作,因此在實際運算的時候性能會大打折扣,常常出現(xiàn)顯卡等待CPU數(shù)據(jù)的情況,其運算速度遠跟不上今天復(fù)雜三維游戲的要求。即使CPU的工作頻率超過 1GHz或更高,對它的幫助也不大,由于這是PC本身設(shè)計造成的問題,與CPU的速度無太大關(guān)系。
GPU圖形處理,可以大致分成 5 個步驟,如下圖箭頭的部分。分別為 vertex shader、primitive processing、rasterisation、fragment shader、testing and blending。
三維座標(biāo)繪圖并產(chǎn)生屏幕輸出的圖形
第一步,vertex shader。是將三維空間中數(shù)個(x,y,z)頂點放進 GPU 中。在這一步驟中,電腦會在內(nèi)部模擬出一個三維空間,并將這些頂點放置在這一空間內(nèi)部。接著,投影在同一平面上,也是我們將看到的畫面。同時,存下各點距離投影面的垂直距離,以便做后續(xù)的處理。
這個過程就像是本地球觀看星星一般。地球的天空,就像是一個投影面,所有的星星,不管遠近皆投影在同一面上。本地球的我們,抬起頭來觀看星星,分不出星星的遠近,只能分辨出亮度。GPU 所投影出的結(jié)果,和這個情況類似。
從地球所看到的星空,星星就像是投影到一球面上,除非使用特別的儀器,不然分不出星星和地球的距離
第二步,primitive processing。是將相關(guān)的點鏈接在一起,以形成圖形。在一開始輸入數(shù)個頂點進入 GPU 時,程序會特別注記哪些點是需要組合在一起,以形成一線或面。就像是看星座的時候一樣,將相關(guān)連的星星連起來,形成特定的圖案。
第三步,rasterisation。因為電腦的屏幕是由一個又一個的像素組成,因此,需要將一條連續(xù)的直線,使用繪圖的演算法,以方格繪出該直線。圖形也是以此方式,先標(biāo)出邊線,再用方格填滿整個平面。
第四步,fragment shader。將格點化后的圖形著上顏色。所需著上的顏色也是于輸入時便被注記。在游玩游戲時,這一步相當(dāng)耗費 GPU 的計算資源,因為光影的效果、物體表面材質(zhì)皆是在這一步進行,這些計算決定著游戲畫面的精細程度。因此在游玩游戲時,調(diào)高游戲畫面品質(zhì)大幅增加這一步的計算負擔(dān),降低游戲品質(zhì)。
將一個三角形,用方格呈現(xiàn)近似原始圖案,并著上顏色。一塊又一塊的方格,就是顯示器上的像素
最后一步,testing and blending。便是將第一步所獲得的投影垂直距離取出,和第四步的結(jié)果一同做最后處理。在去除被會被其他較近距離的物體擋住的物體后,讓剩下的圖形放進 GPU 的輸出內(nèi)存。之后,結(jié)果便會被送到電腦屏幕顯示。
GPU與DSP區(qū)別
GPU在幾個主要方面有別于DSP(Digital Signal Processing,簡稱DSP(數(shù)字信號處理)架構(gòu)。其所有計算均使用浮點算法,而且目前還沒有位或整數(shù)運算指令。此外,由于GPU專為圖像處理設(shè)計,因此存儲系統(tǒng)實際上是一個二維的分段存儲空間,包括一個區(qū)段號(從中讀取圖像)和二維地址(圖像中的X、Y坐標(biāo))。此外,沒有任何間接寫指令。輸出寫地址由光柵處理器確定,而且不能由程序改變。這對于自然分布在存儲器之中的算法而言是極大的挑戰(zhàn)。最后一點,不同碎片的處理過程間不允許通信。實際上,碎片處理器是一個SIMD數(shù)據(jù)并行執(zhí)行單元,在所有碎片中獨立執(zhí)行代碼。
盡管有上述約束,但是GPU還是可以有效地執(zhí)行多種運算,從線性代數(shù)和信號處理到數(shù)值仿真。雖然概念簡單,但新用戶在使用GPU計算時還是會感到迷惑,因為GPU需要專有的圖形知識。這種情況下,一些軟件工具可以提供幫助。兩種高級描影語言CG和HLSL能夠讓用戶編寫類似C的代碼,隨后編譯成碎片程序匯編語言。Brook是專為GPU計算設(shè)計,且不需要圖形知識的高級語言。因此對第一次使用GPU進行開發(fā)的工作人員而言,它可以算是一個很好的起點。 Brook是C語言的延伸,整合了可以直接映射到 GPU的簡單數(shù)據(jù)并行編程構(gòu)造。經(jīng)GPU存儲和操作的數(shù)據(jù)被形象地比喻成“流”(stream),類似于標(biāo)準(zhǔn)C中的數(shù)組。核心(Kernel)是在流上操作的函數(shù)。在一系列輸入流上調(diào)用一個核心函數(shù)意味著在流元素上實施了隱含的循環(huán),即對每一個流元素調(diào)用核心體。Brook還提供了約簡機制,例如對一個流中所有的元素進行和、最大值或乘積計算。Brook還完全隱藏了圖形API的所有細節(jié),并把GPU中類似二維存儲器系統(tǒng)這樣許多用戶不熟悉的部分進行了虛擬化處理。用Brook編寫的應(yīng)用程序包括線性代數(shù)子程序、快速傅立葉轉(zhuǎn)換、光線追蹤和圖像處理。利用ATI的X800XT和Nvidia的GeForce 6800 Ultra型GPU,在相同高速緩存、SSE匯編優(yōu)化Pentium 4執(zhí)行條件下,許多此類應(yīng)用的速度提升高達7倍之多。
對GPU計算感興趣的用戶努力將算法映射到圖形基本元素。類似Brook這樣的高級編程語言的問世使編程新手也能夠很容易就掌握GPU的性能優(yōu)勢。訪問GPU計算功能的便利性也使得GPU的演變將繼續(xù)下去,不僅僅作為繪制引擎,而是會成為個人電腦的主要計算引擎。
GPU和CPU的區(qū)別是什么?
要解釋兩者的區(qū)別,要先明白兩者的相同之處:兩者都有總線和外界聯(lián)系,有自己的緩存體系,以及數(shù)字和邏輯運算單元。一句話,兩者都為了完成計算任務(wù)而設(shè)計。
兩者的區(qū)別在于存在于片內(nèi)的緩存體系和數(shù)字邏輯運算單元的結(jié)構(gòu)差異:CPU雖然有多核,但總數(shù)沒有超過兩位數(shù),每個核都有足夠大的緩存和足夠多的數(shù)字和邏輯運算單元,并輔助有很多加速分支判斷甚至更復(fù)雜的邏輯判斷的硬件;GPU的核數(shù)遠超CPU,被稱為眾核(NVIDIA Fermi有512個核)。每個核擁有的緩存大小相對小,數(shù)字邏輯運算單元也少而簡單(GPU初始時在浮點計算上一直弱于CPU)。從結(jié)果上導(dǎo)致CPU擅長處理具有復(fù)雜計算步驟和復(fù)雜數(shù)據(jù)依賴的計算任務(wù),如分布式計算,數(shù)據(jù)壓縮,人工智能,物理模擬,以及其他很多很多計算任務(wù)等。GPU由于歷史原因,是為了視頻游戲而產(chǎn)生的(至今其主要驅(qū)動力還是不斷增長的視頻游戲市場),在三維游戲中常常出現(xiàn)的一類操作是對海量數(shù)據(jù)進行相同的操作,如:對每一個頂點進行同樣的坐標(biāo)變換,對每一個頂點按照同樣的光照模型計算顏色值。GPU的眾核架構(gòu)非常適合把同樣的指令流并行發(fā)送到眾核上,采用不同的輸入數(shù)據(jù)執(zhí)行。在 2003-2004年左右,圖形學(xué)之外的領(lǐng)域?qū)<议_始注意到GPU與眾不同的計算能力,開始嘗試把GPU用于通用計算(即GPGPU)。之后NVIDIA發(fā)布了CUDA,AMD和等公司也發(fā)布了OpenCL,GPU開始在通用計算領(lǐng)域得到廣泛應(yīng)用,包括:數(shù)值分析,海量數(shù)據(jù)處理(排序,Map- Reduce等),金融分析等等。
簡而言之,當(dāng)程序員為CPU編寫程序時,他們傾向于利用復(fù)雜的邏輯結(jié)構(gòu)優(yōu)化算法從而減少計算任務(wù)的運行時間,即Latency。當(dāng)程序員為GPU編寫程序時,則利用其處理海量數(shù)據(jù)的優(yōu)勢,通過提高總的數(shù)據(jù)吞吐量(Throughput)來掩蓋 Lantency。目前,CPU和GPU的區(qū)別正在逐漸縮小,因為GPU也在處理不規(guī)則任務(wù)和線程間通信方面有了長足的進步。另外,功耗問題對于GPU比CPU更嚴(yán)重。
總的來講,GPU和CPU的區(qū)別是個很大的話題,在這里只能簡單講解一下了。
(審核編輯: 滄海一土)
分享