1 引言
近年來,隨著大功率開關(guān)電源的發(fā)展,對控制器的要求越來越高,開關(guān)電源的數(shù)字化和智能化也將成為未來的發(fā)展方向。
目前,我國的大功率開關(guān)電源多采用傳統(tǒng)的模擬控制方式,電路復(fù)雜,可靠性差。因此,采用集成度高、集成功能強(qiáng)大的數(shù)字控制器設(shè)計開關(guān)電源控制器,來適應(yīng)不斷提高的開關(guān)電源輸出可編程控制、數(shù)據(jù)通訊、智能化控制等要求。
2.數(shù)字控制器設(shè)計
本文設(shè)計的數(shù)字控制器,采用TI公司24X系列DSP控制器中的TMS320LF2407A芯片作為主控制器,主要功能模塊包括:(1)DSP與可編程邏 輯器件CPLD相配合實現(xiàn)全橋移相諧振軟開關(guān)驅(qū)動(2)偏磁檢測電路;(3)其他功能,如數(shù)據(jù)采集、保護(hù)及外部接口等??刂葡到y(tǒng)結(jié)構(gòu)如圖1所示。
2.1移相控制波形的生成
TMS320LF2407A芯片包含兩個事件管理器EVA和EVB,每個事件管理器都包括兩個通用定時器,通用定時器GPT1和GPT2對應(yīng)于事件管理器EVA,GPT1和GPT2對應(yīng)于事件管理器EVB,通用定時器的結(jié)構(gòu)如圖2所示。
通用定時器是PWM波形產(chǎn)生的基礎(chǔ),每個通用定時器都可以提供一路單獨的PWM輸出通道。獲得指定周期指定脈寬的PWM信號的過程是:首先設(shè)置通用定時器控制寄存器TxCON確定計數(shù)器的計數(shù)模式和時鐘源;然后根據(jù)需要的PWM波形周期設(shè)置周期寄存器TxPR;接著裝載比較寄存器TxCMPR,確定 PWM 波形的占空比。通過上述相應(yīng)的設(shè)置即可獲得指定周期、指定脈寬的PWM信號。
而輸出移相波形的關(guān)鍵是讓同一事件管理器中的兩個通用定時器同步工作,并且在一個通用定時器從零開始計數(shù)的時刻,賦予另一個通用定時器計數(shù)器不同的初值,初值的大小決定兩個通用定時器輸出PWM波形的相位關(guān)系。本文利用事件管理器EVA的兩個通用定時器GPT1和GPT2的同步工作,產(chǎn)生移相波形。
為了避免因開關(guān)器件特別是IGBT器件在關(guān)斷時電流拖尾造成橋臂瞬時直通所造成的危害,還需要在同側(cè)橋臂的開關(guān)器件控制波形中添加死區(qū)。因為PLD 具有可 在線修改能力,可在PCB電路完成后隨時修改設(shè)計,而不必改動硬件電路,因此本文采用ALTERA公司的EPM7000S系列的CPLD芯片,通過編程生成控制波形的死區(qū)。如圖3所示。
2.2磁偏檢測電路
在全橋電路中,一對功率開關(guān)管在工作周期的前半部分和后半部分交替地通斷,若它們的飽和壓降相等,導(dǎo)通脈寬也一樣,則稱電路工作在平衡狀態(tài)。但若由于某種原因?qū)е聝蓚€半周期內(nèi)施加在中頻變壓器上的電壓不相等(例如功率開關(guān)管的飽和壓降有較大差異)或是一對晶體管的導(dǎo)通脈寬不相等(例如由于存儲時間的不一 致、控制電路輸出脈寬不相等以及反饋回路引起的不對稱等)時,功率轉(zhuǎn)換電路就工作在不平衡狀態(tài)。變壓器的磁通在一個周期終了時不能返回到起始點,于是將在 一個方向增大,其工作區(qū)域?qū)⑵蛞粋€象限,引起磁芯飽和從而導(dǎo)致功率開關(guān)管損壞,逆變失敗,此即所謂“單向偏磁”。
為了避免變壓器的飽和,充分發(fā)揮數(shù)字控制器的優(yōu)勢,盡量簡化主電路的設(shè)計,增加變壓器的利用率,本文設(shè)計中采取以下方法來進(jìn)行磁偏的檢測和控制。如圖4所示,通過互感器分別檢測變壓器的一次側(cè)正負(fù)半周的電流大小,將檢測得到的值HCQ1和HCQ2進(jìn)行比較,一旦某個半周的電流偏大超過一定的值,則認(rèn)為出現(xiàn) 了偏磁,將該信號送入TMS320LF2407A的捕獲單元功能,產(chǎn)生捕獲中斷并通過中斷程序去調(diào)整相應(yīng)橋臂的功率開關(guān)管驅(qū)動脈沖的寬度,強(qiáng)制對變壓器進(jìn)行磁恢復(fù),防止變壓器飽和現(xiàn)象的發(fā)生。
2.3數(shù)據(jù)采樣及濾波
為了確??刂瓢迮c系統(tǒng)主電路的信號隔離,數(shù)據(jù)采樣電路上采用與霍爾電壓傳感器和霍爾電流傳感器接口,確保采樣輸入電路的信號與采樣輸出信號的完全隔離。
TMS320LF2407A芯片內(nèi)部集成了10位精度的帶內(nèi)置采樣/保持的模數(shù)轉(zhuǎn)換模塊(ADC)。根據(jù)系統(tǒng)的技術(shù)要求,10位ADC的精度可以滿足電壓的分辨率、電流的分辨率的控制要求,因此本文直接利用控制芯片內(nèi)部集成的ADC,就可滿足控制精度。另外,該10位ADC是高速ADC, 最小轉(zhuǎn)換時間可達(dá)到500 ns,也滿足控制對采樣周期要求。
為了提高ADC數(shù)字采樣的精度,減少軟件濾波的工作量,設(shè)計了低通濾波器對電壓和電流的信號進(jìn)行處理,以消除高頻信號的干擾和更好的消除線路以及空間的干擾。
2.4保護(hù)功能
電源運行過程中,可能會發(fā)生一些異常狀態(tài),如全橋電路出現(xiàn)直通使得原邊母線短路;副邊負(fù)載短路或者過流、散熱器過熱等等,需要在控制中加以保護(hù)。
在本文設(shè)計中,利用了DSP 功率保護(hù)引腳PDPINT的功能對異常狀態(tài)進(jìn)行檢測并能夠做到及時恰當(dāng)處理,做到系統(tǒng)的安全可靠運行。
保護(hù)電路采用窗口比較電路,分別檢測功率開關(guān)管的過流信號,輸出的短路信號和散熱器的過熱信號。設(shè)定保護(hù)的閥值,一旦出現(xiàn)任何異常,就可以立刻將保護(hù)信號送入DSP 功率保護(hù)引腳PDPINT或者外部中斷信號IOPE-2,通知控制系統(tǒng)并采取相應(yīng)的措施:對于原邊的短路以及副邊的短路采用不可恢復(fù)的保護(hù)方式,立刻關(guān)閉 PWM驅(qū)動信號,切斷電源的輸入,以防止其它更嚴(yán)重的危險發(fā)生;對于散熱器過熱等可恢復(fù)的保護(hù)信號,則暫時關(guān)閉PWM輸出,等狀態(tài)恢復(fù)后再重新恢復(fù)工作。
(審核編輯: 小王子)
分享